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Abstract
In this review we discuss approaches to numerical modelling of decoherence
by a spin bath. We consider several popular simulation methods, briefly
discussing their implementation, and analyse their advantages and drawbacks.
Furthermore, we consider application of these methods to several different
physical systems, demonstrating how the numerical simulations can help in
understanding the details of the decoherence process in quantum spin systems.
The discussion of possible interesting directions for further research concludes
the review.
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1. Decoherence: fundamental and applied aspects

Currently, considerable research effort of many experimental and theoretical groups is focused
on understanding, manipulating, and using quantum spin systems for new applications. Many
directions are being actively explored in various areas of physics and engineering, ranging from
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advanced approaches to high-sensitivity spin detection and high-precision metrology [1–3],
coherent spintronics [4], to quantum computations and quantum information processing [5].
The key unifying feature of these projects is that they all utilize quantum coherence between
different states of the many-spin system. In the most basic situations, such as the Datta–
Das spin field-effect transistor [6], only the single-spin coherences matter. In this device, the
source–drain current is modulated due to the gate-controlled rotation of an electron spin, i.e.,
for an electron with the spin state a|↑〉 + beiφ |↓〉 the current is determined by the relative
phase φ between the ‘up’ and ‘down’ states. In more complex situations, the many-spin
coherences (the quantum phases between the states of several different electron/nuclear spins)
are important. For instance, the squeezed many-spin states which are used for high-precision
magnetometry [1, 2] involve complex phase relations between different quantum states of a
large number of atomic spins.

So far, quite a few theoretical proposals employing the quantum coherence of electron
and/or nuclear spins have already been successfully realized in practice. Among many
prominent experimental advances we here mention only a few, such as (1) implementation of
the quantum factorization algorithm in liquid-state NMR experiments [7]; (2) implementation
of high-precision spin measurement using the spin squeezed states [2] and the quantum
entanglement between spins [3]; (3) implementation of Rabi oscillations and spin-echo
experiments for single electron spins in quantum dots and for two coupled electron
spins [8–10]; (4) manipulation of a few-spin ensemble in a solid by magnetic resonance
force microscopy (MRFM) techniques [11]. However, only a small fraction of the proposed
applications has gone beyond the basic proof-of-concept experiments. The fundamental
problem which limits the practical application of quantum coherence is the inevitable
interaction of real many-spin systems with their environments4. For instance, an electron
spin in a semiconductor interacts with phonons (via spin–orbit coupling), with nuclear spins
(via hyperfine interaction), with magnetic defects and impurities, etc. In the course of these
interactions, the subtle phase relations between the different quantum states of the system are
quickly lost; this process is often called decoherence. The state of the decohered system can no
longer be represented as a coherent superposition of different quantum states, but constitutes an
incoherent mixture, where different states are independent of each other and are occupied with
different probabilities. The nontrivial quantum properties of the system are destroyed, and the
system behaves as an essentially classical object.

In order to find efficient ways of mitigating the destructive influence of decoherence,
a detailed understanding of its dynamics is needed. This is why so many theoretical and
experimental studies are focused on investigating the details of the decoherence process in
various physical systems. However, the widespread interest in decoherence is not bounded
by its importance for novel applications. Indeed, any real system is open, interacting
with a large number of environmental degrees of freedom. Therefore, decoherence is a
ubiquitous phenomenon, which is important for the understanding of almost any real quantum
system. The destruction of quantum phases has been considered already in the early
works devoted to dynamical evolution of quantum systems [12]. Later, the loss of phase
memory (dephasing) emerged as an important concept in solid-state physics, in the studies
of mesoscopic conductors [13, 14], and in the theory of quantum phase transitions [15]. In
parallel, studies of the decay of the many-spin coherences have become an integral part of
research in nuclear magnetic resonance (NMR) and electron spin resonance (ESR), largely
stimulated by the development of the multiple coherence spectroscopy [16, 17] in the 1970s.

4 The destructive influence of the environment on the coherence of quantum systems has been discovered
independently and studied by many authors; a rather comprehensive list of related papers is given in [19].
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Many important aspects of decoherence have been investigated in detail in atomic and optical
physics, e.g. in the studies of the interaction of the coherent light with matter [18].

At the same time, the concept of decoherence plays an important role in fundamental
research devoted to the foundations of quantum mechanics and the quantum measurement
problem [19–22]. The basic postulate of quantum mechanics states that quantum evolution is
described by unitary transformations. Since quantum mechanics is considered to be a complete
theory (within the non-relativistic domain), this statement should also be true if a quantum
system interacts with a measurement apparatus (which also constitutes a very large quantum
system), so that the joint evolution of the system and the apparatus should also be unitary.
However, the measurement postulate asserts that the process of measurement of a quantum
system (the process of interaction between the system and the apparatus) is described by a
sum of projectors, and therefore cannot be represented by unitary operators. Therefore, in the
course of quantum measurement the initial coherent state of the system turns into an incoherent
mixture, i.e. the system becomes decohered. During this stage, the system establishes quantum
correlations with the measuring apparatus, and a detailed analysis of this process is essential for
understanding quantum measurements [20, 21]. It is important to note here that decoherence
alone cannot completely describe the measurement process. The other components needed
for complete characterization of a quantum measurement are under debate, and many related
questions still remain unsolved [20], but discussion of these issues is beyond the scope of the
present review.

Extensive previous studies have clarified many important issues concerning decoherence in
various systems. One of the major steps in this direction was the determination of an adequate
description for physically relevant environments, which, on the one hand, would be sufficiently
general to be applicable to the majority of real systems, and, on the other hand, would be
tractable [19, 23, 24]. It is possible to imagine some very exotic environments with very
peculiar properties, and some such environments may even exist in reality (e.g., in fractional
quantum Hall effect systems [25]). Fortunately, it appears that the environments which are
encountered most often in real physical systems under normal circumstances (such as phonons,
photons, conduction electrons, etc) can be accurately described by a single model of a ‘boson
bath’, where a large number of environmental degrees of freedom are represented as a set of
independent harmonic oscillators, each being weakly coupled with the central system [19, 23].
Being the most widespread type of environment, the boson bath has attracted much attention.
A number of powerful theoretical approaches can be used in this situation, and currently the
model of a boson bath is understood in much detail [19]. However, later it was realized that
for many situations (such as electron spins in quantum dots, nuclear spins in solid- and liquid-
state NMR experiments, magnetic clusters and molecules), the main source of decoherence
is the coupling of the system with the spin environment (e.g., coupling of the electron spins
with the bath of nuclear spins) [26–29]. The spin bath is essentially different from the bath
of harmonic oscillators, and cannot, in general, be reduced to the boson bath model [29]. On
the other hand, spin baths are encountered frequently (e.g., in nuclear magnetic resonance and
electron spin resonance experiments, as well as in other situations), and, in contrast with such
environments as a Luttinger liquid with backscattering [25], cannot be considered as some
exotic cases. Spin environments have attracted much attention recently, but, in spite of their
fundamental and applied importance, a comprehensive understanding of spin-bath decoherence
is lacking. Therefore, consideration of the spin environments is of particular interest for further
progress in the understanding of decoherence. Decoherence induced by spin baths constitutes
the main subject of the present review.

Summarizing, decoherence is a ubiquitous phenomenon, characteristic for any open
physical system. Detailed understanding of this process is of fundamental interest for many
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areas of physics, ranging from solid-state physics to the foundations of quantum mechanics,
and different aspects of decoherence have been studied in various contexts for many decades.
Beside the fundamental importance, the studies of decoherence have recently become an
essential part of more applied research effort, focused on practical use of quantum coherence
in spin systems. However, the impressive experimental advances in this area constitute only
the first steps, and detailed understanding of decoherence in spin systems is needed for
further progress. Among other sources, the decoherence induced by the spin environments
is of particular interest for further progress in the understanding of decoherence; spin-bath
decoherence constitutes the subject of the present review.

2. Methods for numerical modelling of decoherence

In order to rigorously describe the decoherence process, both the central system and its
environment should be explicitly taken into consideration. Therefore, let us consider a central
system whose dynamics is described by the Hamiltonian HS, and which is coupled to the bath
of external degrees of freedom (described by the Hamiltonian HB) via the interaction HSB, so
that the composite Hamiltonian is

H = HS + HSB + HB. (1)

We assume that the central system has been prepared in some state |φ0〉, and that the bath is
initially in the state |χ0〉, so that at t = 0 there are no correlations between the system and
the bath, and the state |�(0)〉 of the composite system (the central system plus the bath) at
t = 0 is separable, |�(0)〉 = |φ0〉 ⊗ |χ0〉. In the course of evolution, due to the system–bath
coupling, the central system and the bath develop quantum correlations, and the composite
wavefunction |�(t)〉 is no longer separable, i.e. it cannot be decomposed into a direct product
of two functions which would describe the central system and the bath as separate entities.
Such quantum correlations are called entanglement: in the wavefunction |�(t)〉 the state of the
system cannot be separated from the state of the bath [20–22].

In most cases we are not interested in a detailed description of the bath, so it is
convenient to describe the properties of the central system by the reduced density matrix
ρS = TrB |�(t)〉〈�(t)|, where TrB denotes trace over the bath degrees of freedom. As is
the case for any Hermitian matrix, it can be diagonalized, and represented as

ρS = TrB |�(t)〉〈�(t)| =
∑

j

w j (t)|φ j (t)〉〈φ j (t)|. (2)

Such a density matrix can be re-interpreted as an incoherent mixture5 of different states |φ j (t)〉
occupied with the probabilities w j . Obviously, coherence of the cental system is preserved
only if the matrix ρS describes a pure quantum state, i.e. satisfies the condition ρ2

S = ρS. This
happens only if the composite wavefunction |�〉 is separable. However, when the quantum
correlations are established between the central system and its environment, the matrix ρS

describes a decohered mixed state.
Decoherence is a non-equilibrium many-body process, where strong quantum correlations

play a central role. Its description, in general, is a problem of immense complexity. The
course of the decoherence process may strongly depend on very subtle features of the system

5 Of course, such re-interpretation raises many questions. For example, how is it possible to re-interpret the density
matrix (2), which describes a single instance of a system decohered by a single instance of environment, using the
incoherent mixture which implies an ensemble of systems occupying different states with different probabilities.
Another interesting question arises when some of w j are equal to each other, and the corresponding states |φ j 〉 cannot
be determined uniquely. The answers to these question are rather subtle, and some aspects are still discussed in the
literature. We do not discuss them here, instead referring any interested reader to [20].
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and/or the bath dynamics [30–33], such as the onset of quantum chaos in the bath [34, 35] or
parity of the central system [36, 37]. Analytical studies, except for a handful of simple cases,
inevitably involve some approximations. By now, several methods for approximate analysis of
dynamics of an open system have been formulated. For instance, the influence of the bath can
be approximately represented as a noise, classical or quantum, and the corresponding Liouville
equation can be derived for the relevant system’s observables [18]. In another approach,
an approximate equation of motion for the reduced density matrix can be derived, known
as the master equation, where the influence of the environment is represented as some non-
unitary terms [38, 39]. Based on these studies, a certain ‘standard picture’ of the decoherence
process has been developed, which greatly helps in the understanding of decoherence in
general. However, for these approximate methods to be valid, one has to make rather stringent
assumptions about the dynamics of the bath and/or about the properties of the system–bath
interaction (e.g., very weak or very strong interaction, very fast Markovian bath or very slow
quasi-static bath, etc), which are not always satisfied in reality. Accordingly, the cases where
these special conditions are not present, and where the dynamics of decoherence deviates
from the standard one, are of special interest, as they extend a list of possible decoherence
scenarios and provide new insights in the dynamics of the decoherence process. We believe
that detailed and systematic studies of such non-standard situations, which would employ both
numerical and analytical tools, will make it possible in the future to reveal the common features
for novel decoherence scenarios and to develop an intuitive picture for them. Numerical
modelling will be of crucial help in this endeavour. Numerical studies are important for
analysing the situations where the existing approximate treatments are not valid (or, at least,
not obvious). The approximation-free numerical results, especially strengthened by qualitative
analytical arguments, can be valuable for deeper understanding of decoherence. Moreover,
such numerical simulations may be very helpful for validating the approximations which are
intuitively correct but are hard to justify by purely analytical tools. In section 3 of this review,
we present several examples of such numerical studies.

2.1. Direct simulations

The most direct approach to the numerical simulation of decoherence is to explicitly model
the joint dynamics of the central system and the bath, starting from the basic principles of
quantum mechanics. For the given composite system which contains NS cental spins and NB

bath spins, we specify the Hamiltonians HS, HB, and HSB, and, knowing the initial composite
wavefunction |�(0)〉 = |φ0〉 ⊗ |χ0〉, we explicitly calculate |�(t)〉 for any t > 0, thus
determining the evolution of any relevant observable. This approach, obviously, does not
discriminate the spins belonging to the system from the bath spins: all N = NS + NB spins
are treated on equal footings. Therefore, in this section, we will use the same notation Sk

(k = 0 . . . N − 1) for all spins, whether these are bath spins or central spins. A general
Hamiltonian describing such a system of spins 1/2 with pairwise interactions is

H =
∑

k

Bα
k Sα

k +
∑

jm

∑

α,β=x,y,z

Jαβ

jm Sα
j Sβ

m, (3)

where Bα
k are the components of the local fields, and J αβ

jm are the spin coupling parameters. For
simplicity of presentation, everywhere below we consider only spins 1/2, which is sufficient
for the purposes of the present review. For similar reasons, we neglect the three-spin and
higher-order interactions, which are irrelevant in most experimental situations.

To implement the direct approach described above, we expand the composite wavefunction
|�〉 in some orthonormal basis |Xa〉. The most direct choice is the basis set constructed as the
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direct product of the individual spin states: |Xa〉 = |αN−1αN−2 . . . α1α0〉, where αk = 1 if the
kth spin is in the state ‘up’ and αk = 0 if this spin is in the state ‘down’. There are M = 2N

such basis states, so the index a runs from zero to M − 1. Expanding the wavefunction |�〉 in
this basis,

|�〉 =
M−1∑

a=0

Pa|Xa〉, (4)

we represent the state of the composite system as a set of M complex numbers Pa arranged in
a one-dimensional array P. The action of any operator A on the wavefunction |�〉 is reduced
to some modification of the elements of this array

A|�〉 =
M−1∑

a=0

Pa A|Xa〉 =
M−1∑

a=0

P ′
a|Xa〉 (5)

where P ′
a denotes the modified values of the elements of the array P. In order to describe the

dynamics of the decoherence process, we need to determine the temporal evolution of Pa(t).
Naively, one may represent the Hamiltonian as a matrix in the basis |Xa〉, and, after

diagonalizing this matrix, express |�(t)〉 via the eigenvalues Ei and the eigenvectors |ψi 〉.
However, this approach is extremely inefficient [40]. The diagonalization requires M3

operations, and at every moment of time, in order to calculate the value of some observable
A(t), one must perform M3 operations. Moreover, the sparse structure of the Hamiltonian (3) is
often lost in the course of diagonalization, so the whole Hamiltonian matrix (M2 real numbers)
should be stored in the memory. As a result, the simulations with more than 10–15 spins can
rarely be performed using this naive approach (unless the wavefunction |�(t)〉 is artificially
restricted to some sufficiently small dynamically invariant subspace of the Hamiltonian).

It is important to realize that determination of the eigenstates/eigenvalues of the
Hamiltonian and modelling of the dynamical evolution are different (although closely related)
problems, which require different approaches. To date, a large number of numerical methods
have been designed particularly for dynamical modelling of quantum systems, e.g. in quantum
chemistry. However, not all these approaches are applicable to decoherence studies. Typical
quantum chemistry simulations describe the propagation of wavepackets, and most of the
relevant basis states have energy close to the energy of a wavepacket. Only these relevant states
should be accurately described, while an accurate description of the whole energy spectrum
is excessive [41]. In contrast, for most of the decoherence simulations the initial state of the
bath is usually highly disordered, so the composite wavefunction involves a large number of
basis states with very different energies. This distinctive feature limits the number of methods
suitable for modelling decoherence. Below, we describe two efficient approaches, the Suzuki–
Trotter decomposition [42–44] and the Chebyshev polynomial expansion [40, 41, 45–47], in
some detail (these are the methods used for simulations in section 3), and briefly discuss some
other promising approaches to modelling dynamics of many-spin systems over substantially
long periods of time.

The Suzuki–Trotter decomposition [42, 48] has acquired much popularity, due to its
efficiency, conceptual simplicity, and applicability for a wide range of situations, including
explicitly time-dependent Hamiltonians. Within this approach, the Hamiltonian H is
subdivided into a sum of terms H1, . . . , Hr , . . ., and the evolution operator U = exp (−iHδ)

over a short timestep δ is represented via the product of Ur = exp (−iHrδr ), r = 1, . . . , R.
In the simplest case, U = ∏

r exp (−iHrδ) + O(δ2); more complex decompositions of higher
orders can be derived as well [42, 48], e.g. up to the second order, U = U>U< + O(δ3), where

U> = exp (−iH1δ/2) exp (−iH2δ/2) . . . exp (−iHRδ/2), (6)

U< = exp (−iHRδ/2) exp (−iHR−1δ/2) . . . exp (−iH1δ/2). (7)
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The terms Hr should be chosen in such a way that the action of the operators Ur on the
wavefunction |�〉 can be efficiently implemented. The simplest (although not the most
economic) choice is to treat every term in equation (3) separately:

exp (−iBα
j Sα

j t) = cos (Bα
j t/2) − 2iSα

j sin (Bα
j t/2) (8)

exp (−iJαβ

jm Sα
j Sβ

mt) = cos (Jαβ

jm t/4) − 4iSα
j Sβ

m sin (Jαβ

jm t/4), (9)

so that the function |�(t + δ)〉 can be obtained from |�(t)〉 via a sequence of simple
manipulations which are easy to implement in an efficient way, involving only the
multiplication by a constant and the action of the operators Sα

k on the composite wavefunction.
In general, the optimal choice of the sub-Hamiltonians Hr is dictated by many factors, such
as the particular form of the Hamiltonian, requirements of vectorization or parallelization of
the code, etc. The application of the operators Ur to the wavefunction |�〉 does not require
additional memory: the elements of the resulting vector |�r 〉 = Ur |�〉 can simply replace
the corresponding elements of |�〉, so the Suzuki–Trotter approach requires the amount of
memory which grows linearly with M . Also, the operations count per timestep is linear in M .
However, as with any multistep method, the Suzuki–Trotter approach may be difficult to use
for studying the decoherence dynamics during very long time intervals. In order to propagate
the wavefunction |�〉 over the time interval t , one divides this interval into n timesteps, each of
size δ = t/n, and applies the kth order Suzuki–Trotter decomposition at every timestep, thus
introducing an error of order δk+1 per step. The total error accumulated in the wavefunction
|�(t)〉 is of order nδk+1, and if we require this quantity to be smaller than some predefined
tolerance ε then we need to keep a timestep of order of (ε/t)1/k , which means that the required
number of timesteps, and hence the total computation time, grows superlinearly with time as
t1+1/k , and decompositions of order k > 4 are rarely used.

The computation time can be noticeably reduced by using another scheme, based on
the Chebyshev polynomial expansion [40, 41, 45, 46], where the computation time grows
practically linearly with t . Replacement of t5/4 (corresponding to the fourth-order Suzuki–
Trotter decomposition) by t may seem to be of little advantage, but in decoherence studies
one often has to simulate the system over millions of timesteps, so the use of the Chebyshev
polynomials often decreases the simulation time by a factor of 10–20. However, this gain comes
with a limitation: the Chebyshev polynomial expansion is applicable only to Hamiltonians
which have no explicit time dependence, and its extension to time-dependent situations is
nontrivial.

The Chebyshev polynomial expansion is a single-step method, which propagates the
wavefunction over the time interval t in a single step. The essence of the approach is the
following expression for the exponent of any operator G such that ||G|| � 1:

exp (−iGτ) = 1 + 2
∞∑

k=0

(−i)k Jk(τ )Tk(G) (10)

where Jk(τ ) is the Bessel function of kth order and Tk(G) is the Chebyshev polynomial of the
operator G. Since the many-spin Hamiltonian (3) is bounded, we can find such a number E1

that ||H || � E1/2, and, by defining the rescaled Hamiltonian G = 2H/E1 and the rescaled
time τ = E1t/2, use (10) for calculation of the evolution operator. The key feature of the
expansion (10) is that the expansion coefficients Jk(τ ) decrease superexponentially, as (τ/k)k

at large k. This means that the series can be truncated at some sufficiently large k = K , and
the resulting error can be smaller than some pre-defined tolerance ε. In practice, truncation
at K = 1.5τ already gives precision of 10−7 or better in most cases. At the same time, the
Chebyshev polynomials Tk(G) can be efficiently calculated using the recurrence relation

Tk+1(G) = 2GTk(G) + Tk−1(G) (11)

7
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with T0(G) = 1 and T1(G) = G. Thus, the number of operations needed for calculation of
every term in the series (10) grows linearly with M , and the required memory also increases
linearly with M . The total operations count needed to propagate the wavefunction over the time
interval t increases linearly with the truncation order K , and, correspondingly, the computation
time increases practically linearly with t . Therefore, the Chebyshev polynomial expansion is
very suitable for simulating the decoherence process at long times [40, 41].

In reality, however, it is not the computation time but the memory requirements which
limit the application of both the Suzuki–Trotter decomposition and the Chebyshev polynomial
expansion. A typical single-processor workstation addresses only about 1 Gbyte of random
access memory, which means that only about N = 25 quantum spins can be modelled, and
with increasing N , the required memory grows exponentially with N . For simulations of larger
systems, with 30–40 spins, parallel multiprocessor systems are used. The elements Pa of
the array P, which determine the composite wavefunction (see equation (4)), are distributed
between different processes, so that the calculation of |�(t)〉 includes both single-process
computations and inter-process communications. The computations are performed by all
processes in parallel, so the corresponding time decreases as 1/p, where p is the number
of processes. The communication time depends on the particular implementation and on
the specific form of the Hamiltonian (3). For example, in a rather unfavourable situation,
when every spin is coupled to all other spins via Heisenberg exchange, the communication
time decreases as (log2 p)2/p with increasing the number of processes p. Although the
communication time decreases more slowly than the computation time, nevertheless, the total
amount of computation still remains much larger than the amount of communication, because
N is usually much larger than log2 p. In our experience, degradation of the efficiency is
tolerable for small clusters with p = 8–16, and becomes important when larger computers
are used. However, if one needs to model larger systems, with 60–100 spins, simply increasing
the amount of available memory is not a good way to go. For these simulations, different
approaches have to be employed.

In order to drastically reduce the memory requirements, we need to decrease the number
of the basis states needed for the description of the composite system. Therefore, we need to
construct a basis which would change, in an adaptive manner, with the system’s evolution, in
order to provide the best possible description of |�(t)〉 using the least possible number of basis
states. This idea underlies numerous approximate methods in many-body physics, ranging from
the classical mean-field approach to such sophisticated modern methods as for example the
multi-configurational time-dependent Hartree (MCTDH) method [49, 50]. Within this method,
it is assumed that the composite wavefunction |�〉 can be approximated by a superposition
of a relatively small number of time-dependent ‘configurations’, i.e. products of time-varying
spin wavefunctions. While the MCTDH method is known to be efficient for modelling the
boson-bath decoherence, to our knowledge, its applicability for the spin-bath decoherence (in
particular, accuracy of the multi-configurational Hartree approximation) has not been studied
yet.

The idea of an adaptive time-varying basis has been widely exploited recently in a different
framework, within the time-dependent density matrix renormalization group (TDMRG)
approach [51–53]. The density matrix renormalization group was developed initially for
modelling of the equilibrium thermodynamic properties of many-body systems [54], and
later it was extended to study non-equilibrium evolution. Within this method, the many-spin
system is divided into subsystems, and the wavefunction for the system is constructed as a
superposition of the relevant subsystems’ states, chosen from Schmidt decomposition of the
density matrix (hence the name of the method). These relevant states form a very suitable time-
dependent adaptive basis, which accurately represents the wavefunction |�〉 and at the same

8
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time has very low dimensionality. The use of the truncated set of the basis states introduces
errors in the simulations, but the accuracy can be controlled by taking a sufficiently large
number of basis states. The success of the method is based on the fact that for a wide range
of practically interesting systems the number of the time-dependent basis states needed for
accurate representation of |�(t)〉 remains relatively small. So far, in several applications,
systems with 100–200 spins have been simulated using the TDMRG approach [51, 55].
However, for some sufficiently complex dynamical evolution, when all spins in the system are
strongly entangled with each other, the number of required basis states may grow very rapidly
with time, negating all advantages of the TDMRG method (in which case one has to resort to
the Suzuki–Trotter or Chebyshev expansion methods). Detailed studies of such situations are
yet to be performed.

2.2. Coherent-state approach

All limitations of the direct approaches mentioned above stem from one fundamental problem:
the dimensionality of the Hilbert space of a many-spin system grows exponentially with
the number of spins, and numerical modelling of many-dimensional space is very hard.
However, Monte Carlo (MC) methods have been developed to solve this very problem, and
it would be extremely beneficial to find a way of applying random sampling for decoherence
simulations [56]. For the MC sampling to be useful, the evolution operator should be
represented as a sum of positively definite transition probabilities (possibly with different
weights ascribed to different trajectories). This condition is often satisfied for the imaginary-
time (i.e., finite-temperature) simulations, but even in this case, for various many-fermion or
frustrated many-spin systems, the trajectories with both positive and negative ‘probabilities’
should be taken into account (the so-called sign problem) [57]. When the number of the
trajectories with negative ‘probabilities’ is sufficiently large, the statistical error of the MC
simulations increases exponentially, making the MC sampling practically useless. In the case
of dynamical non-equilibrium simulations, the severe sign problem is always present. Indeed, a
matrix element of the evolution operator between some orthonormal basis states |Xa〉 and |Xb〉
is

〈Xb| exp (−iHt)|Xa〉 =
∑

j

〈Xa|ψ j 〉〈ψ j |Xb〉 exp (−iE j t) (12)

where |ψ j 〉 and E j denote, correspondingly, the eigenstates and eigenenergies of the compound
Hamiltonian, so the transition from |Xb〉 to |Xa〉 is a superposition of many complex
‘probabilities’ which have, in general, comparable absolute values.

Nevertheless, it is possible to construct an approximate, but extremely accurate, sampling
procedure, suitable for simulating the spin-bath decoherence, which employs the positively
definite transition probabilities and allows modelling systems with many thousands of spins
on a single-processor workstation [58]. In order to achieve that, a basis of non-orthogonal
coherent states should be used [59, 60]. Traditionally, spin coherent states are used in solid-
state physics for derivation of the semiclassical approximation and for construction of the spin
path integrals. As we show below and in section 3, the coherent-state representations of the
density matrix [18, 61, 62], widely used in quantum optics, may constitute a powerful tool for
studying spin-bath decoherence.

The coherent state for spin J is defined as |μ〉 = N ∑2J
m=0[(2J )!/(m!(2J −

m)!)]1/2μm |J − m〉, where N = (1 + |μ|2)−J is the normalization constant [59, 60]. For
a spin 1/2, the coherent state has a simple form

|μ〉 = cos (θ/2)|↑〉 + sin (θ/2)eiφ|↓〉, (13)

9
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where we have used the parameterization μ = tan (θ/2)eiφ . The basis of coherent states is
overcomplete, so the expansion of an operator in this basis is not uniquely defined. In particular,
any Hermitian operator A can be represented in a diagonal form using only the real matrix
elements, i.e. it is possible to choose a real-valued function Ã(θ, φ) such that

A =
∫




Ã(θ, φ)|μ〉〈μ| sin θ dθ dφ, (14)

where the integration is performed over the sphere [18, 61, 62]. Note that Ã(θ, φ) 	=
〈θ, φ|A|θ, φ〉, and the function Ã(θ, φ) is not necessarily positive. It is also important to
note that the choice of Ã(θ, φ) is not unique: any linear combination of spherical harmonics
Y m

l (θ, φ) of the order l > 2J can be added to it, without changing the operator A. The density
matrix, obviously, can also be written in a diagonal form (14) using an appropriate function
P(θ, φ); this representation is called the P-representation.

For a many-spin system, the P-representation of a composite density matrix has a
remarkable form:

ρ =
∫

P({θ j , φ j })
N−1⊗

j=0

|μ j 〉〈μ j |
N∏

j=0

sin θ j dθ j dφ j , (15)

where {θ j , φ j } denotes the set of all θ0, . . . , θN−1 and φ0, . . . , φN−1. Within the P-
representation, the ‘matrix part’ of the density matrix has a mean-field-like form: it is a direct
product of the matrices of the individual spins, while all many-body aspects of composite
system are completely described by the single function P({θ j , φ j }). However, in contrast with
the mean-field approximation, the representation (15) is exact. Using the P-representation, the
quantum-mechanical average x = Tr(ρ(t)X) of any observable X can be calculated by simple
integration,

x =
∫

P({θ j , φ j }, t)
N−1⊗

j=0

〈μ j |X |μ j 〉
N−1∏

j=0

sin θ j dθ j dφ j . (16)

Therefore, the function P possesses all the good properties of the probability density, and we
only need to find a way to accurately model its evolution.

Obviously, direct solution of the complex partial differential equation for P({θ j , φ j }, t) is
impossible for a large number of spins, and a Monte Carlo sampling is the natural way to go.
We initially generate many samples of the random vector (θ

(m)
0 , . . . , θ

(m)
N−1, φ

(m)
0 , . . . , φ

(m)
N−1)

distributed according to the probability distribution P({θ j , φ j }, 0) (the index m = 1, . . . , M
enumerates the different samples). Then we propagate all the sample vectors in time, so that
every initial sample vector (θ

(m)
0 , . . . , θ

(m)
N−1, φ

(m)
0 , . . . , φ

(m)
N−1) after a period of time t evolves

into a vector (�
(m)
0 (t), . . . ,�(m)

N−1(t),�
(m)
0 (t), . . . , �(m)

N−1(t)). If the equations of motion for all

variables �
(m)
j (t) and �

(m)
j (t) are chosen correctly, then the distribution function P({θ j , φ j }, t)

coincides with the distribution P(� j (t),� j (t)). The value x = Tr(ρ(t)X) of any observable
X can be calculated as an average over the samples:

x = 1

M

M∑

m=1

N−1⊗

j=0

〈�(m)
j ,�

(m)
j |X |�(m)

j ,�
(m)
j 〉 sin �

(m)
j . (17)

If we manage to ensure that the P-function is positively definite (we show how to do this below)
then the MC sampling would allow accurate simulations for thousands of spins.

But first let us find the equations of motion (EOMs) for � j (t) and � j (t). In quantum
optics, the EOMs for relevant bosonic variables are derived in a somewhat intricate way,
by using so-called positive P-representation, deriving the Fokker–Planck equation for the
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corresponding P-function and transforming it into the Langevin equations, solving the latter
by MC sampling [63–65]. For spin systems, to our knowledge, such an approach has not
been implemented yet due to a number of difficulties. We are using a different approach,
differentiating both sides of equation (15) with time and, using the fact that dP/dt =∑

j (∂ P/∂� j ) d� j/dt + (∂ P/∂� j ) d� j/dt , we choose expressions for d� j/dt and d� j/dt
such that they satisfy the resulting equation.

To illustrate how this approach works, let us consider a model which will be considered in
section 3.1, where a single central spin S0 is coupled to a bath of nuclear spins S1 . . . SN via
Heisenberg interactions:

H =
∑

k

AkS0Sk . (18)

To begin, let us study one term in this Hamiltonian, i.e. we consider two spins 1/2 (the central
spin and the kth bath spin) coupled by the isotropic Heisenberg interaction Hk = AkS0Sk . The
most general form for the two-spin density matrix is ρ = w00101k + w0α10σ

α
k + wβ0σ

β

0 1k +
wλνσ

λ
0 σ ν

k , where α = x, y, z (and similarly for other Greek indices), σα
0 and σ

β

k denote the
Pauli matrices for the 0th and the kth spin, respectively, and 10 (1k) denotes the unity matrix
for the 0th (kth) spin. Here and below, we assume summation over the repeated indices. From
von Neumann’s equation ρ̇(t) = i[ρ(t),H], we obtain ẇ00(t) = 0 (which expresses the fact
that Trρ(t) = 1), and

ẇ0γ (t) = Ak

2
εαβγ wαβ(t), ẇγ 0(t) = − Ak

2
εαβγ wαβ(t),

ẇαβ(t) = Ak

2
εαβγ [wγ 0(t) − w0γ (t)],

(19)

where εαβγ is a completely antisymmetric unity tensor (permutation symbol). On the
other hand, from the P-representation (15) it is easy to find that P({θ0, φ0, θk, φk}, t) =
p00(t) + p0α(t)cα

k + pβ0(t)c
β

0 + pλν(t)cλ
0 cν

k , where p00 = (1/4π2)w00, p0α = (3/4π2)w0α ,
pα0 = (3/4π2)wα0, and pαβ = (9/4π2)wαβ . Here, we have used the shorthand notations
cx

0 = sin θ0 cos φ0, cy
0 = sin θ0 sin φ0, cz

0 = cos θ0 (and similarly for cx
k , cy

k , cz
k). Note, as we

mentioned above, that the spherical harmonics of the order two and higher in P({θ0, φ0, θk, φk})
are irrelevant: they do not change the density matrix.

Let us assume that the EOMs for (�0,�0) and (�k,�k) can be written in a form
resembling the motion of classical spins. Introducing the shorthand notations C x

0 =
sin �0 cos �0, C y

0 = sin �0 sin �0, Cz
0 = cos �0 (and similarly for Cx

k , C y
k , Cz

k ), we assume
that the EOMs have the form

Ċ0 = g1[Ck × C0], Ċk = −g2[Ck × C0], (20)

where g1 and g2 are some constants to be determined. Substituting these assumed EOMs
into the probability distribution P({�0(t),�0(t),�k(t),�k(t)}) = P00 + P0αCα

k + Pβ0Cβ

0 +
PλνCλ

0 Cν
k , we find that the evolution of the corresponding density matrix is described by the

equations

ẇ0γ (t) = −g2εαβγ wαβ(t), ẇγ 0(t) = g1εαβγ wαβ(t),

ẇαβ(t) = (1/3)εαβγ [g2w0γ (t) − g1wγ 0(t)], (21)

and ẇ00(t) = 0. Comparing the equations (19) and (21), one may see that they are
incompatible, and the assumed EOMs (20) should be discarded. However, we are interested
only in wγ 0(t), since only this term determines the value of S0(t). By choosing g1 = g2 =
g = Ak

√
3/2, and differentiating (19) and (21) with respect to time once more, we see that

they produce the same result:

ẅγ 0(t) = −ẅ0γ (t) = (A2
k/2)(w0γ − wγ 0). (22)

11
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Thus, the coefficients wγ 0(t) produced by the assumed EOMs (20) and by the exact
equations (19) coincide, provided that the initial conditions wγ 0(0) and ẇγ 0(0) also coincide,
which implies that all wαβ(0) should be equal to zero. The latter condition means that the
method described above is applicable only to completely disordered baths. This limitation
is not catastrophic, and is satisfied in many experimentally relevant situations. On the other
hand, the advantages of the present approach are significant. It allows modelling of very large
baths (tens of thousand of spins) with very modest computer resources, and the equations of
motion are extremely simple: one just has to replace the coupling constants Ak by Ak

√
3/2,

and simulate the motion of classical spins.
It is important to note that the coherent-state approach described above is not equivalent to

a standard semiclassical approximation. The easiest way to demonstrate that is to consider the
situation of unequal spins 1 and 1/2 (S0 = 1 and Sk = 1/2). The analysis above gives g1 =
Ak

√
3/2, g2 = Ak

√
7/2, while the semiclassical approach would give g1 = Ak

√
3/2, g2 =

Ak

√
2. Furthermore, the initial conditions are different: for instance, if the central spin 1/2

is initially directed along the z-axis then the initial density matrix ρ = 2−NB |↑〉〈↑| ⊗NB
k=1 1k ,

which means that the initial P-function is P({θ j , φ j }, 0) = (4π)−N (1 + 3 cos θ0), while the
semiclassics would require the central spin to be directed up, and the corresponding probability
distribution is p({θ j , φ j }, 0) = (4π)−N δ(cos θ0 − 1), where δ(. . .) is the Dirac delta-function.

The final problem which has to be solved is how to make the function P({θ j , φ j })
positively definite. In quantum optics, for modelling the bosonic systems, a more general
representation (positive P-representation) is used for this purpose. For spin systems, where the
use of positive-P representation is associated with a number of difficulties, we choose a simpler
approach: instead of using the original P-function, which is not positively definite, we use the
function P ′ = a + bP where the constants a and b are chosen to make P ′({θ j , φ j }) positive
everywhere and, at the same time, to keep correct normalization. This trick is equivalent to
replacing the original density matrix ρ by ρ ′ = a1 + bρ, where 1 is the unity operator which is
not affected by any unitary evolution, so that its contribution to any observable is easy to correct.
This rescaling of the P-function somewhat increases the statistical error, but for systems with
a small number of central spins this is not a problem.

The real difficulty comes from the fact that the analytics described above cannot be
implemented exactly, which makes the approach approximate. Namely, the equations of
motion (20) lead to the appearance of higher-order spherical harmonics in the function
P({θ j , φ j }, t), i.e. such terms as cα

0 cβ

0 cλ
k cν

k emerge. These terms do not directly affect ρ(t) (they
disappear after integration in equation (15)), but they contaminate the EOMs for physically
relevant terms, so that the actual EOM for wγ 0(t) becomes ẅγ 0(t) = (A2

k/2)(w0γ −wγ 0)+ V ,
where V is the contribution from the higher-order unphysical terms. The corresponding error is
significant for small systems, with N = 2–5. However, real baths typically contain thousands
of spins, and, fortunately, the error quickly decreases with increasing the total number of spins
in the composite system. A large number of numerical examples (some of them are presented
in section 3) show that, already for N = 15–20 spins, the P-representation simulations provide
very accurate results for several experimentally important situations. However, extensive
studies are still needed to understand in detail the limits of applicability of this approach.

Summarizing this section, we point out that a large number of methods are currently
available for modelling spin-bath decoherence. The exact methods, such as the Suzuki–Trotter
decomposition or the Chebyshev polynomial expansion, allow modelling of the systems with
N ∼ 25 spins on a single-processor workstation, and up to 30–40 spins by using larger
computer systems. The main limitation of these approaches is that the required memory grows
exponentially with N . More sophisticated methods employing the adaptive basis states, such as
the TDMRG approach, allow modelling of even larger systems, up to 100–200 spins, but they

12
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may become inefficient in some situations, when the number of relevant basis states grows
too fast. Finally, for several experimentally important situations, the method based on P-
representation sampling allows very accurate modelling of systems with N = 10 000–20 000
spins, but more extensive studies are needed to determine the usefulness of this method under
different circumstances.

3. Applications to physical systems

The methods described above have been successfully applied for studying in detail a number
of problems concerning the decoherence of spin systems by spin baths. Below, we describe
several examples.

3.1. Decoherence of an electron spin in a quantum dot

Electron spins in quantum dots (QDs) have attracted much attention as possible building blocks
for future applications in semiconductor coherent spintronics. In particular, QDs are considered
as one of most promising candidates for implementation of quantum computations [66]. An
electron spin localized in a quantum dot is well suited for representing a quantum bit (qubit):
it is a natural two-state quantum system, which can be efficiently manipulated by external
magnetic fields and gate voltages. QDs are also very promising as quantum spin memory
units [67, 68]. The QD-based architectures are potentially scalable, and their fabrication relies
on well-developed semiconductor technology. On the other hand, the electron spin is coupled to
the phonons (via spin–orbit coupling) and to the large number of nuclear spins (e.g., for GaAs
QDs, to the spins of 69Ga, 71Ga, and 75As). For small and medium (less than ∼0.1 T) external
fields and experimentally relevant (hundreds of mK) temperatures the hyperfine coupling with
the nuclear spin bath leads to very quick decoherence, on a nanosecond time scale [8, 9, 69],
and therefore constitutes a dominant decoherence channel (the phonon-induced decoherence
becomes important at much larger fields [70–72]). Due to interaction with the bath of nuclear
spins in a dot, the electron spin quickly ‘loses memory’ about its initial orientation and cannot
be used for computation. Experimental studies of this process have become possible very
recently [8–10], and detailed theoretical understanding of the experimental results is important.
Moreover, the spin-bath decoherence of an electron spin in a quantum dot demonstrates a
number of fundamentally interesting features, such as non-Markovian dynamics of the bath,
which are important for general understanding of the decoherence process.

The Hamiltonian which describes an electron spin S0 interacting with a bath of NB

nuclear spins Sk (k = 1, . . . , NB) in a QD includes many terms: (i) Zeeman energy of
the electron spin; (ii) the isotropic contact hyperfine coupling between the electron and the
nuclei; (iii) the Zeeman energy of the nuclear spins; (iv) the long-range electron–nuclei
dipolar interaction and the anisotropic part of the hyperfine interaction arising from the dipolar
electron–nuclear coupling; (v) the dipole–dipole coupling between the nuclear spins. However,
on the nanosecond-to-microsecond timescale, which is of primary interest for us, only the first
two terms are important, while the other interactions can be estimated to be 3–4 orders of
magnitude smaller. Therefore, the relevant Hamiltonian is

H = g∗
e μB B0Sz

0 +
N∑

k=1

AkSkS0, (23)

where B0 is the external magnetic field, and Ak = (8π/3)g∗
e μBgnμnu(rk) is the contact

hyperfine coupling, determined by the electron density u(rk) at the site rk of the kth nuclear
spin and by the Landé factors of the electron g∗

e and of the nuclei gn .
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We are interested in the dynamics of the central spin, i.e. in the dynamics of s0(t) =
Tr S0ρ(t), where ρ(t) is the composite density matrix. So far, an exact analytical solution of
this problem has not been obtained. The Hamiltonian (23) is known to be integrable, but the
formal solution [73] is very complex, and, to our knowledge, it has not yet been used for actual
calculations of sz

0(t), in spite of recent progress in that direction [74]. Also, much research
has been devoted to studying the situations where a large external magnetic field is applied,
or where the nuclear spin bath has large polarizations. In these cases, the perturbation theory
allows an extensive analysis [75–78]. But the interesting and experimentally relevant regime of
moderate magnetic fields and/or moderate bath polarization is much more difficult to study by
analytical means, and numerical simulations are important for detailed understanding of this
situation.

The electron spin decoherence in a QD is an interesting two-step process [58, 69, 75–80].
At the same time, similar two-step decoherence was found for two coupled spins [36, 37].
The two-spin systems are under active theoretical investigation now [81, 82], but below we
discuss only the single-spin case in order to focus on basic features of the decoherence process,
thus keeping the presentation simple and accessible for a broader audience. The dynamics of an
electron spin at short times and at long times is governed by different physical mechanisms, and
different numerical approaches are needed to describe the short-time and long-time evolution
of the system. The two stages will be considered in the next two subsections.

3.1.1. Short-time dynamics. Let us assume that initially the electron spin is prepared in the
state |↑〉, while the bath is completely disordered (unpolarized) and the corresponding density
matrix is proportional to the unity matrix, ρB = 2−NB 1. In this case, the quantum-mechanical
averages of the transverse components sx

0 and s y
0 remain zero throughout the evolution, but the

dynamics of sz
0(t) is rather complex. In order to qualitatively understand the basic features

of the decoherence process let us assume that B0 = 0 and consider an unrealistic but exactly
solvable case, when all coupling constants are equal to each other, Ak = A. In this case, the
Hamiltonian (23) becomes H = AS0S, where S = ∑

k Sk is the total spin of the bath, and the
problem can be easily solved:

sz
0(t) = (1/6) + (1/3)(1 − 2b2t2) exp (−b2t2) (24)

where b2 = (1/8)
∑

k A2
k = A2 NB/8. That is, the z-component of the electron spin first

exhibits a Gaussian decay with the characteristic decoherence time T ∗
2 = √

8/(NB A2), reaches
the minimum, then increases and saturates at 1/6. For a typical GaAs QD with the electron
delocalized over N = 106 nuclear spins, A ∼ A0/N ∼ 10−4 μeV (where A0 ≈ 0.1 meV is
the hyperfine coupling for an electron localized on a single nucleus [83]). The corresponding
decoherence time T ∗

2 ∼ 10 ns, as confirmed by recent experiments [8].
This analytical solution is possible because we neglected the dynamics of the bath. The

assumption Ak = A means that the ‘length’ of the total bath spin
√

S2 remains constant, so
that S0 and S just precess around their vector sum J = S0 + S. Since NB � 1, the vectors J
and S practically coincide, which means that the direction of the vector S also remains almost
constant in time. Therefore, we are dealing with a simple dephasing of the vector S0 by a static
environment, and sz

0(t) decays due to averaging over different possible directions and lengths
of the vector S. In particular, if we replace the quantum bath spin S by a classical random
magnetic field B with Gaussian distribution, and average over all possible realizations of B,
then the same answer (24) can be obtained.

One may hope that the same qualitative arguments are applicable also in the realistic case,
when all Ak are different. Although in this case both the direction and the length of the bath
spin S change, at short times these changes may be small and thus can be neglected, so that
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Figure 1. Time evolution of the z-component sz
0(t) of the electron spin interacting with NB = 21

bath spins; the coupling constants Ak are random, uniformly distributed between 0 and 1. (a) The
analytical result (24) obtained from the quasi-static bath approximation. (b) The result of numerical
simulations performed using the Chebyshev polynomial expansion. At short times, t � 5, the
agreement between approximate analytics and exact numerics is very good, while at longer times
the slow logarithmic relaxation, not described by the QSA, takes place.

in the real QDs at short times one deals with the simple dephasing by a static bath. Such
considerations form a basis for the quasi-static bath approximation (QSA), which has often
been used to analyse the electron spin decoherence in QDs [8, 69, 76, 77, 82, 84]. The validity
of these arguments has been verified by direct numerical simulations [80] for different magnetic
fields B0 and bath polarizations P = M/(NB/2) (where M = ∑

k sz
k is the magnetization of

the bath). As an example, the results for B0 = P = 0 are shown in figure 1. The quasi-static
bath approximation agrees well with the exact numerical solution at short times. At longer
times, however, sz

0(t) again slowly decreases with time, while the QSA predicts saturation at
the value of 1/6. The decrease of sz

0(t) at long times is qualitatively different: it is governed by
the motion of the bath spins, and is beyond the QSA.

The QSA can be used to understand how the decoherence dynamics changes with external
field and with the bath polarization. This approximation can be implemented in two equivalent
ways, which lead to the same answer: either by considering the motion of a single central
spin in a random external field, or by letting Ak = A in the Hamiltonian (23) and solving the
corresponding many-spin quantum problem. For the case of zero polarization and non-zero
magnetic field, it gives

sz
0(t) = (1/2) − W (λ, D; t), (25)

and the function W (λ, D; t) has the form

W = D

λ2
− D

λ2
e−Dt2/2 cos λt + i

√
π

2

D3/2

2λ3
e−λ2/2D

×
[
�

(
Dt − iλ√

2D

)
− �

(
Dt + iλ√

2D

)
+ 2�

(
iλ√
2D

)]
(26)

where D = NB/4, and �(x) is the error function. For simplicity of notation, in these
equations we took A = 1, and introduced the variable λ = g∗

e μB B0/A; this corresponds
to normalization of the energy and time scales, so that the time t is measured in the units
of 1/A. In a similar way, we can consider the case of zero magnetic field and non-zero
bath polarization P 	= 0. We assume that the initial state of the bath is described by the
density matrix ρB = (1/Zβ) exp (−βM), where β is the inverse spin temperature of the bath,
M = ∑

k sz
k is the bath magnetization, and Zβ = [2 cosh(β/2)]NB is the statistical sum. Such a

choice corresponds to a thermally polarized bath with the polarization P = − tanh (β/2), and
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we are interested here in the case of small-to-moderate P . In this situation, the QSA gives

sz
0(t) = (1/2) − W (κ, D; t), (27)

where κ = Dβ = NBβ/4, and the function W (κ, D; t) is defined by equation (26). It is also
possible to obtain an analytic solution for large polarizations (when P ∼ 1), but the answer is
rather complex, and we do not present it here.

The validity of the quasi-static bath approximation can be checked by exact numerical
simulations, using for example the Chebyshev polynomial expansion. The initial state of the
composite system can be taken as |�(0)〉 = |↑〉 ⊗ |χβ〉, where |↑〉 describes the initial state of
the electron spin, and the state |χβ〉 of the bath is designed to correspond to the density matrix
ρB = (1/Zβ) exp (−βM). For β = 0, when ρB = 2−NB 1, the state |χ0〉 should be chosen as a
normalized random state. Namely, we take the orthonormal basis |Ya〉 for the bath, constructed
as a product of the individual bath spin states, |Ya〉 = |αN−1αN−2 . . . α1〉, where αk = 1 if the
kth spin is in the state ‘up’ and αk = 0 if this spin is in the state ‘down’; there are MB = 2NB

such basis states in total. The bath’s state |χ0〉 is represented in this basis as

|χ0〉 =
MB∑

a=1

Ba|Ya〉 (28)

where Ba are the independent, uniformly distributed random complex numbers, satisfying the
normalization condition

∑
a |Ba|2 = 1. In the corresponding density matrix ρ ′

B = |χ0〉〈χ0|,
the diagonal elements are of order of 2−NB , while the off-diagonal elements are much smaller,
of order of 2−NB/

√
MB, so that the matrix ρ ′

B is almost proportional to the unity matrix,
ρ ′

B = |χ0〉〈χ0| ≈ ρB = 2−NB 1. For a sufficiently large number of bath spins, NB ∼ 12–
14, a single realization of Ba is already sufficient to calculate the central system properties:
after propagation in time and tracing out the bath spins, the random bath state gives an
excellent approximation (with the negligible error of order of 1/

√
MB = 2−NB/2) for the central

spin component sz
0(t). This fact has been known for quite a while in the computer physics

community, and is based on solid mathematical arguments (Levy’s lemma; see e.g. [85]).
Furthermore, the random bath state is a starting point for modelling of the polarized bath. The
state |χβ〉, which corresponds to the density matrix ρB = (1/Zβ) exp (−βM) for finite β, can
be obtained from the random bath state |χ0〉 by applying the operator Vβ = exp (−β

∑
k Sz

k )

and subsequent normalization. The operator Vβ can be implemented by using the imaginary-
time extension of the Suzuki–Trotter or the Chebyshev polynomial method.

The evolution of sz
0(t) given by the QSA is shown in figure 2 for several different

values of λ and κ , along with the corresponding numerical simulations. The quasi-static bath
approximation demonstrates good agreement with the exact numerical results at short times. It
is interesting that the functional form of equations (27) and (25) is identical, up to replacing κ

by λ. The small nonzero bath polarization P affects the central spin in exactly the same way as
the external field of the magnitude B0 = −P ANB/(2g∗

e μB), which is the average Overhauser
field exerted on the central spin by the nuclear bath.

One may expect that by polarizing the bath, and therefore creating a more ordered initial
state of the nuclear subsystem, the decoherence can be suppressed, i.e. the decoherence time
may be increased. However, both analytics (QSA) and numerics show that this does not happen
for experimentally relevant small-to-intermediate bath polarizations. The decoherence time
is determined by the spread in the Overhauser fields, which is proportional to the variation
of the bath magnetization 〈(�M)2〉 = (1 − P2)NB/4, and is little affected by small bath
polarizations P . Currently, strongly polarized baths are difficult to achieve experimentally, and
such methods as narrowing the nuclear spin distribution [86], dynamical decoupling and spin
echo techniques [8, 9, 87, 88] may be more practical for the suppression of decoherence.
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Figure 2. Time evolution of the z-component sz
0(t) of the electron spin interacting with NB = 20

bath spins for different magnetic fields ((a)–(c)) and for different bath polarizations ((d)–(f)). The
coupling constants Ak are random, uniformly distributed between 0 and 1. The dashed curves
denote the exact numerical simulations results for N = 20, and the solid curves correspond to the
analytical results obtained within the QSA. The numerical results agree well with the analytical
predictions, and the underdamped oscillations appear once λ or κ is larger than

√
N .

Instead of suppressing decoherence, an increase of the magnetic field (and/or bath
polarization) leads to the appearance of oscillations in sz

0(t) once the field exceeds a critical
value, of order of A0(

√
NBg∗

e μB)−1, or when the polarization becomes larger than 1/
√

NB.
This transition from smooth overdamped decay to underdamped oscillations is similar to the
well-known transition in the dynamics of a damped oscillator: the evolution of the central spin
is overdamped (or underdamped) depending on whether the decay time T ∗

2 is larger (or smaller)
than the ‘bare’ oscillation frequency determined by λ or κ . In order to observe these oscillations
in a typical GaAs quantum dot, a very modest external field of order of 3 mT, or polarization
of order of 0.5%, is needed.

3.1.2. Long-time dynamics. In contrast with the short-time dynamics, the behaviour of
an electron spin in a QD at long times is not yet understood in detail. Perturbation theory
can be used to study the case of a strong magnetic field or strongly polarized nuclear spin
bath [75, 77, 78], but for the experimentally important non-perturbative regimes, no well-
justified analytical method has been suggested yet, and the interesting long-time dynamics
of the central spin remains an open problem. The exact numerical simulations are also badly
suited for such an investigation. The simulations with the baths of different sizes, varying
from NB = 10 to 24, show that sz

0(t) saturates at long times, and the saturation value
steadily decreases with NB. In order to obtain conclusive results, one needs to model the
decoherence with thousands of bath spins, which is way beyond the capabilities of the exact
simulations.

The coherent-state approach, as described in section 2.2, was developed to treat this
problem [58]. As shown in figure 3, P-representation sampling gives excellent accuracy
already for NB = 20, and its accuracy only decreases with growing NB. At t = 0, the
composite density matrix ρ(0) = 2−NB |↑〉〈↑| ⊗ 1 corresponds to the P-function P =
(4π)−N (1+3 cos θ0), which is not positively definite. According to section 2.2, the simulations
are performed with the initial distribution P ′ = (4π)−N (1 + cos θ0), and sz

0(t) is calculated as
an average:
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Figure 3. Longitudinal relaxation sz
0(t) of the central spin coupled to a bath of nuclear spins; the

couplings Ak are randomly distributed between −0.4 and 0.6, the external field g∗
e μB B0 = 1.0.

(a) central spin 1/2, N = 21 bath spins (b) central spin 1, N = 19 bath spins. Solid lines denote
the results of the exact solutions, the open circles denote the P-representation sampling results; the
accuracy of the latter is excellent.
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Figure 4. Long-time relaxation of the electron spin coupled to a bath of 16 000 nuclear spins
1/2. Graphs show 1/sz

0(t) as a function of ln t . The coupling constants were calculated as
Ak = (1/14)u(rk), where u(r) is the electron density. (a) u(r) is taken as a Gaussian with the
half-widths dx = 8.4a, dy = 9.1a, dz = 2.2a (a is the lattice constant), shifted from the centre
of the lattice by the vector (0.252a, 0.448a, 0.1a); (b) u(r) is taken as an exponential function of
r, with the same parameters. An extra averaging over 20 neighbouring time points was used to
decrease the number of realizations. The red solid lines are obtained from raw data.

sz
0(t) = (1/2)

∫
3 cos θ0 P ′({θ j , φ j }, t)

N−1∏

j=0

sin θ j dθ j dφ j . (29)

Using the P-representation approach, electron spin decoherence has been modelled in a
rather realistic setting [58]. The bath spins 1/2 are assumed to be placed at the sites of a
piece of a cubic lattice with the size Nx × Ny × Nz , (Nx = Ny = 40, Nz = 10, so the
total number of bath spins NB = Nx Ny Nz = 16 000). The values of the hyperfine coupling
constants Ak were chosen to be proportional to the electron density u(rk) at the site rk of
the kth nuclear spin. The simulations were performed for two forms of the function u(rk):
(1) Gaussian with the half-widths dx = 8.4a, dy = 9.1a, dz = 2.2a along the x-, y-, and z-axes,
correspondingly (where a is the lattice parameter), shifted from the centre of the lattice by the
vector (0.252a, 0.448a, 0.1a); (2) exponential with the same parameters. The corresponding
simulations results are given in figure 4. Also, the simulations were done for a random set of
Ak chosen from a uniform distribution. In all these cases, the numerical results suggest that at
long times sz

0(t) exhibits a very slow logarithmic decay, sz
0(t) ∼ 1/ ln t .

Although the numerical results give strong evidence in support of such an unusual decay,
this form has not yet been obtained analytically. The decay 1/ ln t was predicted from the
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perturbation theory for polarized baths [75] in the case of a two-dimensional (2D) dot with
Gaussian electron density, but other forms of decay have been predicted for other electron
density distributions. In contrast, the P-representation modelling suggests 1/ ln t decay for
different electron density distributions and for unpolarized baths. Also, similar relaxation was
found [79] for a 2D Gaussian electron density, using the adiabatic approximation applied to the
semiclassical EOM. The accuracy of this method is unclear; it is supposed to be correct for large
NB, but it is difficult to confirm or reject that: for NB = 22 the exact solution disagrees with
the approximation of [79], and for larger NB the exact numerical solution is extremely difficult.
Also, dependence of the long-time dynamics of the electron spin on the external magnetic field
and on the bath polarization has not been studied yet.

3.2. Modelling of NMR experiments

Nuclear magnetic resonance (NMR) spectroscopy is an important tool widely used in physics,
chemistry, and biology [16, 17]. By creating a non-equilibrium magnetization in a given group
of nuclear spins (which have close Larmor frequencies), and by observing decay of this non-
equilibrium magnetization, it is possible to obtain much knowledge about the interaction of
these spins with each other, with other spins present in the sample, and with other external
degrees of freedom. The shape and the characteristic decay time of the NMR signal, which is
proportional to the non-equilibrium magnetization, are determined by the Hamiltonian which
governs the dynamics of the given group of spins. Correspondingly, the parameters of this
Hamiltonian (for instance, the strength of the coupling between the spins) can be found by
analysing the time dependence of the NMR signal. For a small number of relevant spins (e.g.,
for a pair of spins), the Hamiltonian parameters can be relatively easily determined by analytical
means. However, in more complex situations, numerical modelling of large spin systems is
needed for detailed understanding of the NMR data.

Decoherence is the central process in the NMR experiments, which determines the decay
of the signal [16, 17, 89, 90]. In some cases, however, identification of the central system and
the bath is not completely trivial. In particular, below we focus on the systems of N identical
spins Sk (k = 1 . . . N ) coupled by dipolar interactions: in such a system, every spin belongs to
the central system and to the bath simultaneously, as follows. For a standard NMR experiments
performed in a high quantizing field B0 (several Tesla) directed along the z-axis, and at not-
too-low temperatures (more than a few milliKelvins), the equilibrium density matrix is typically
written in the form ρ = (1/Z) exp [−(γ h̄ B0/T )

∑
k Sz

k ] ≈ 1 − (γ h̄ B0/T )
∑

k Sz
k , where Z is

the statistical sum, γ is the gyromagnetic ratio, and T is the temperature, which is much larger
than γ h̄ B0. By assuming this form, we have neglected other terms (the chemical shifts, the
dipolar interactions, etc) which are much smaller than the ‘bare’ Zeeman energy. The first term
(the unity matrix) in ρ is irrelevant: it does not change during the evolution, and also does not
contribute to the NMR signal. Therefore, the relevant part of the density matrix is ρ̃ ∝ ∑

k Sz
k .

The non-equilibrium magnetization along the x-axis is created by applying a π/2-pulse along
the y-axis, which transforms Sz

k into Sx
k . Thus, the relevant part of the resulting density matrix

acquires a form

ρ̃ ∝ Sx
1 ⊗ 12 · · · ⊗ 1N + Sx

2 ⊗ 11 ⊗ 13 · · · ⊗ 1N + · · · . (30)

The first term in this sum corresponds to a composite density matrix, where the central system
is made of the spin number 1 polarized along the x-axis, and a completely disordered bath is
made of spins 2, 3, . . . , N . The second term corresponds to a central system made of the spin
number 2 polarized along the x-axis, and a bath made of spins 1, 3, 4, . . . , N , and so on. Every
spin is decohered by a bath made of all other spins, and the total NMR signal is the sum of
individual contributions from all spins.
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NMR experiments constitute an excellent testbed for decoherence studies. The nuclear
spins are well isolated from the environment, and interactions which lead to a very fast
decoherence in other systems are very weak in systems made of nuclear spins. The single-
spin and many-spin coherences can persist for milliseconds in NMR experiments and therefore
can be (relatively) easy to detect and analyse. It is not surprising that for example the
first proof-of-concept implementation of quantum computations were performed using NMR
techniques [7], and modern decoherence studies widely employ the concepts borrowed from
spin resonance. The numerical methods described in section 2 are well suited for modelling the
NMR experiments. Below, we present two examples of such modelling.

3.2.1. Spin echo in systems of dipolar-coupled spins. Spin echo is one of most amazing effects
in spin resonance, which has determined the success of NMR techniques in a wide range of
applications [16, 17, 91]. It is often the case that the decay of the nuclear magnetization is
caused not by some physically interesting interaction, but comes from dephasing of nuclear
spins by a parasitic static random field. By applying a π -pulse, the evolution of the nuclear
spins in this static field can be reversed, so that the effect of dephasing is cancelled. The
nuclear spins are refocused, and the NMR signal grows back to its original value exhibiting
a sharp peak (the echo signal). Although the echo signal also decays in time, this decay is
much slower, and it is caused not by parasitic fields but by physically important interactions.
Development of these ideas has led to the appearance of a whole family of new methods, the
dynamical decoupling techniques [87], which are used in various quantum systems in order to
suppress unwanted interactions [92]. Much progress has been achieved in this area during the
last three decades, but many issues have not been completely resolved yet. The behaviour of a
real physical many-spin system subjected to a series of the control pulses can be very complex,
and can exhibit very surprising features.

In particular, unusual results were obtained recently while studying the spin echo in
silicon [93]. The spin echo decay was measured by two methods. First, regular Hahn echo
experiments were performed. Initially, a non-equilibrium magnetization along the x-axis was
created by applying a preparatory π/2Y pulse. The system was left to evolve freely for a time
period τ , and then a refocusing πX pulse was applied to the sample. After the time period
τ following the refocusing pulse, an echo signal appears, and its height as a function of the
time delay τ was recorded. In the second batch of experiments, instead of performing many
measurements with different time delays, a Carr–Purcell–Meiboom–Gill (CPMG) refocusing
sequence was used, i.e. a train of πX pulses separated by the time delay 2τ was applied to
the sample, and the decay of the echo signal was measured stroboscopically, after every pulse.
Surprisingly, the echo decay in the second case was very different. For short τ , the CPMG
echoes exhibited a very long tail, i.e. after some time, the decay of the CPMG echo was much
slower than the decay of the Hahn echo. For larger delay times, along with the long-time tail,
an interesting asymmetry in the echo signals was observed: every odd-numbered echo was
noticeably smaller than every even-numbered echo. In subsequent experiments [94], such a
difference was observed in many systems, from silicon with different dopants to yttrium oxide
and fullerene samples, and the standard explanations (such as the diffusion of nuclei, which
leads to similar consequences in liquid-state NMR) could not resolve the problem.

The only common feature for all solid-state systems where the difference between the Hahn
echo and the CPMG echo has been detected is the presence of many nuclear spins coupled by
dipolar interactions. Therefore, the relevant Hamiltonian can be assumed to have a well-known
form (in the rotating frame, which will be used everywhere below),

H =
∑

k

h̄ωk Sz
k −

∑

j>k

(A jk/2)(S j Sk − 3Sz
j Sz

k ). (31)
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Figure 5. The calculated decay of spin echoes in a system of N = 15 dipolar coupled spins
in silicon. In both panels, for reference, the dashed line shows the amplitude of Hahn echo as a
function of total time t passed since the end of the preparatory π/2Y pulse. The solid line shows
the NMR signal for CPMG echo as a function of total time t passed since the end of the preparatory
π/2Y pulse. (a) The CPMG echo for inter-pulse delay 2τ = 3.412 ms; (b) the CPMG echo for
inter-pulse delay 2τ = 9.836 ms.

The first term takes into account the random chemical shifts ωk for the spins, and the
second term describes the dipolar interactions with the coupling constants A jk = γ 2h̄2(1 −
3 cos2 θ jk)/r3

jk , where θ jk is the polar angle of the vector connecting the j th and the kth spins
and r jk is the length of this vector. The problem now becomes clear: every πX pulse changes
the sign of the first term, thus refocusing the rotation caused by the chemical shift, but leaves the
dipolar part of the Hamiltonian intact. Therefore, the Hahn echo and the CPMG echo should
decay in exactly the same manner, in contrast with the experimental results.

However, real πX pulses are never ideal: the actual evolution of spins always slightly
differs from the exact rotation described by the operator U 0

p = exp (iπ
∑

k Sx
k ). The pulse

errors come from many sources: small inaccuracies in the pulse duration, from the transients
at the front and tail of the pulse, etc. Some of the effects caused by the pulse non-idealities
can be studied analytically, using various perturbative techniques [91, 95]. However, for more
detailed understanding, numerical simulations are needed. As we show below, some of the
experimentally observed effects may be qualitatively explained by the pulse errors, although a
complete quantitative explanation of the experiments is still lacking.

To be specific, let us focus on the spin echo in the Si:P powder sample marked as the sample
(d) in [93]. The exact simulations with N = 15 spins were performed using the Chebyshev
polynomial expansion method. The only isotope of silicon having non-zero nuclear spin is
29Si with spin S = 1/2, natural abundance 4.68%. Correspondingly, in numerical simulations,
the spins 1/2 were randomly placed in the sites of diamond lattice (the experimental value for
the lattice constant a = 5.43 Å was taken) with the filling factor 4.68%. Orientation of the
crystal lattice with respect to the quantizing field was chosen to be uniform, as expected in an
unoriented powder sample, and the set of dipolar coupling constants A jk was calculated. The
spread in the chemical shifts ωk is known from the free induction decay (FID) experiments;
accordingly, in the simulations ωk were drawn from the Gaussian distribution with FWHM

/2π = 3 kHz. The simulation results were averaged over 102–103 realizations, each
realization having a different set of ωk , different configuration of nuclear spins and different
orientation with respect to the quantizing field (i.e. different set of A jk). The πX pulses were
assumed to have rectangular shape, and the strength of the pulse field H1 was taken from
experiments, γ H1/2π = 22 kHz.

The typical simulations results are presented in figure 5, where the calculated Hahn echo
decay, and the CPMG echo decay for both small and large inter-pulse delay, are shown. The
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decay of the Hahn echo obtained from the simulations is in a reasonable agreement with
experiments, the main source of error being the relatively small number N of spins, and does
not exhibit any unusual features. However, after application of many consecutive πX pulses,
as in the CPMG experiments, the decay of the echo becomes much slower, and the long-time
tail appears. Therefore, in agreement with experiments, the simulations demonstrate the clear
difference between the Hahn echo and the CPMG echo. Moreover, when the inter-pulse delay
time increases, a clear difference in height (about a factor of two) between the even-numbered
and the odd-numbered echoes appears, also in agreement with the experimental findings.

The unusual behaviour of the CPMG echo is caused by the accumulation of small pulse
errors. For the model considered above, these errors come from small but non-zero chemical
shifts: since γ H1/
 ≈ 7, the contribution of the chemical shifts during the pulse are important.
Instead of ideal rotation U 0

p = exp (iπ Sx
k ), the real evolution of the kth spin during the pulse is

described by the operator Up = exp [i(π Sx
k + ξk Sz

k )], where ξk = ωk/(γ H1). Therefore, the
rotation is non-uniform, and, after every pulse, the spins change orientation with respect to each
other. As a result, the dipolar field created on a given spin by all other spins is reduced (see
the explanations at the beginning of this section), and this leads to suppression of the dipolar
interactions which determine the decay of the echo signal. Correspondingly, the decay of the
CPMG echo becomes slower. The even–odd echo asymmetry can also be understood from this
point of view: every πX pulse flips a given spin, and only after an even number of pulses does
the spin come back close to its initial orientation, so even-numbered echoes are higher than the
odd-numbered ones.

The behaviour of the CPMG echo described above has some similarity with spin
locking [96]. Although such an explanation is very tempting, experiments with an alternating-
phase CPMG sequence give strong evidence against such an interpretation [93]. Also, the spin
locking effect can be refuted by numerical modelling, by assuming that during the pulses every
spin has its own effective rotation axis in the x–y plane. No spin locking can happen in this
case, since the total locking field is zero, but the unusual features of the CPMG echo persist.
Similarly, by performing simulations with time-varying chemical shifts ωk(t) (modelled as
Ornstein–Uhlenbeck processes with the correlation time tc), it is possible to show that the long
echo tail and the even–odd asymmetry become less pronounced as tc becomes smaller.

The exact numerical calculations with N = 15 spins achieve a good qualitative description
of the experiments, but for quantitative agreement, simulations with much larger N are
required. Moreover, such simulations are needed to understand the experiments where stronger
pulse fields H1 have been used, γ H1/
 ∼ 100. For large H1, the unusual features of
the CPMG echo are still present, but the simulations with N = 15 cannot reproduce them.
Realistic-size modelling with thousands of spins is yet to be performed; the coherent-state
approach is a good candidate for such calculations, and applicability of this method for the
NMR simulations has been verified very recently, as described below.

3.2.2. Free induction decay in CaF2. The P-representation sampling described in section 2.2
is a rather natural candidate for modelling large quantum spin systems, as needed for
numerical simulations of the NMR experiments. This method has been successfully applied
for studying the decoherence of electron spins in quantum dots, but its accuracy is hard to
estimate analytically, and it is not clear a priori whether the P-representation simulations give
sufficiently accurate results for complex systems involving a large number of spins coupled by
dipolar interactions.

The simplest way to validate the method is to compare the simulation results with the
experimental data obtained for a suitable reference system. For solid-state NMR, single crystals
of calcium fluoride CaF2 constitute a good choice: large clean crystals can be relatively easily
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Figure 6. The free induction decay in a single crystal of CaF2 for different orientations of the
quantizing axis: (a) [001]; (b) [011]; (c) [111]. Solid lines denote the simulation results obtained
using the P-representation sampling with no fitting parameters, and the empty circles denote the
experimental data obtained in [97].

grown, and the free induction decay (FID) in CaF2 was measured with excellent accuracy a
long time ago [97]. The nuclear spins of fluorine (S = 1/2 with 100% natural abundance) are
placed in the sites of a simple cubic lattice with the lattice constant a = 2.723 Å, while the
nuclear spins of 43Ca are rare (0.135% abundance) and their influence can be neglected.

The evolution of the fluorine spins in clean crystals of CaF2 can be described by the dipolar
Hamiltonian

H =
∑

j>k

(A jk/2)(3Sz
j Sz

k − S j Sk), (32)

with the coupling constants A jk = γ 2h̄2(1 − 3 cos2 θ jk)/r3
jk , where θ jk is the polar angle of

the vector connecting the j th and the kth spins and r jk is the length of this vector. All other
interactions are very small and can be neglected. The equations of motion for C j (t) can be
derived in complete analogy with section 2.2, and give an analogous result:

Ċ j = [h j × C j ] (33)

where the components of the local field h j are hx
j = −(

√
3/4)

∑
k A jk Sx

k , hy
j =

−(
√

3/4)
∑

k A jk Sy
k , and hz

j = (
√

3/2)
∑

k A jk Sz
k . Due to translational invariance, the

coupling coefficients A jk depend only on r jk = r j − rk , so the expressions for the local
fields h j have a form of discrete convolution, and can be efficiently calculated by fast Fourier
transformation.

The calculations of the FID curves were performed for a piece of cubic lattice of size
30 × 30 × 30, i.e. a total of N = 27 000 quantum spins 1/2 were modelled. Free boundary
conditions were assumed, and the zero padding method was used to calculate the convolutions
via fast Fourier transforms. The initial distribution function P(t = 0) = ∏

k Pk was chosen
as a product of individual P-functions Pk = (1 + p sin θk cos φk) with small p = 0.05,
which corresponds to a system of spins slightly polarized along the x-axis. Although this
corresponds to a slightly polarized bath (see equation (30)), the error introduced by such a
choice is of order of p2 and is very small. The NMR signal was calculated as M x/(pN/2),
where Mx (t) = ∑

k sx
k (t) is the total nuclear magnetization along the x-axis.

The simulation results are presented in figure 6 for three different orientations of the
quantizing field, along the axes [001], [011], and [111]. In all three cases the agreement
between the simulations and the experiment is spectacularly good. The detailed shape of
the FID curves in CaF2 has been studied theoretically before [98] (beyond the calculation of
the moments), but this theory requires several fitting parameters to be determined from the
experimental data. To our knowledge, the P-representation simulations for the first time allow
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very accurate modelling of the free induction decay in a solid-state NMR system with a very
large number of spins without using any fitting parameters whatsoever. This result gives us hope
that the P-representation sampling may be a suitable method for studying NMR in complex
spin systems. However, much work is still needed to confirm or reject this hope.

4. Summary and future prospects

Above, we have outlined several most typical methods which have been used so far for
modelling the decoherence of spin systems by spin baths. Among them, such exact methods
as the Suzuki–Trotter decomposition and the Chebyshev polynomial expansion are the most
versatile, and they can be used for modelling almost any type of system. Their most important
drawback is that the total number of spins which these methods can handle is rather small, but
they still can be very helpful for understanding the decoherence dynamics in various systems.
Other exact methods, such as the TDMRG approach, can model much bigger systems, and
have been successfully applied for studying many physically interesting situations. However,
when the dynamics of the decoherence process is very complex, leading to strong entanglement
between all spins in the composite system, the TDMRG approach may break down. Finally,
approximate simulations based on the coherent-state representation of the density matrix
demonstrate very high accuracy and have been successfully applied so far to several problems,
but their limitations are not yet clear. Expanding this approach and studying its region of
validity may lead to interesting results in the future.

In this review, we have considered only single-spin central systems, in order to keep the
presentation simple. The decoherence process in systems containing few spins can already be
very rich [36, 37, 81]. Moreover, the spin-bath decoherence of ‘truly’ many-spin systems,
e.g. spin chains, can be even more interesting, due to interplay between the intra-system
excitations and the coupling to the spin bath [99]. This area of research attracts more and
more attention now [100], but still remains largely unexplored, in spite of its relevance for
quantum computations and quantum communications.

Also, in this review we only briefly mentioned such a promising and important
research direction as studying the dynamical decoupling methods designed for mitigating
decoherence [87, 88, 92]. These methods employ specially constructed sequences of pulses
which are applied to the central system in order to suppress the coupling to the decohering
environment. Many such sequences have been developed in the context of NMR and
ESR [16, 17, 91], but development of the dynamical decoupling methods for other systems
requires much research [87, 92]. At the same time, the analytical tools are not always sufficient
to study in detail the dynamics of an open central system subjected to time-varying magnetic
fields. The numerical simulations can greatly facilitate the analysis of different decoupling
methods, and can help a lot in assessing the performance of these methods for various types
of spin bath. Also, as we considered above, numerical simulations may be very useful for
studying the unavoidable imperfections of the decoupling methods (such as for example the
pulse errors).

The new problems arising in the studies of decoherence will inevitably require the
development of new numerical tools, and development of the simulation techniques may be
important for further progress. In particular, it may be interesting to study the applicability of
the MCTDH technique [49, 50] for modelling decoherence in those cases where the TDMRG
approach breaks down. Another potentially promising approach is the further development of
coherent-state approaches using the insights gained in quantum optics [18, 63–65]. Finally,
it may be especially interesting to consider the possibility of combining the coherent-state
simulations of the bath with the exact simulations of the central system.
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